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S u m m a r y .  This study has monitored junctional and nonjunctional 
resistance, [Ca?']i and [H-],, and the effects of various drugs 
in crayfish septate axons exposed to neutral anesthetics. The 
uncouphng efficiency of heptanol and halothane is significantly 
potentiated by caffeine and theophylline. The modest uncoupling 
effects of isoflurane, described here for the first time. are also 
enhanced by caffeine. Heptanol causes a decrease in ICa:-]i and 
[H+]i both in the presence and absence of either caffeine or 
theophylline. A similar but transient effect on {Ca 2- ]i is observed 
with halothane. 4-Aminopyridine strongly inhibits the uncoupling 
effects of heptanol. The observed decrease in [Ca -~- ]i with hepta- 
nol and halothane and negative results obtained with different 
[Ca>],,, Ca>-channel blockers (nisoldipine and Cd :+) and rya- 
nodine speak against a Ca -,+ participation. Negative results ob- 
tained with 3-isobutyl-l-methylxanthine, forskolin, CPT-cAMP. 
8Br-cGMP, adenosine, phorbol ester and H7, superfused in the 

presence and absence of caffeine and/or heptanol, indicate that 
neither the heptano[ effects nor their potentiation by caffeine are 
mediated by cyclic nucleotides, adenosine receptors and kinase 
C. The data suggest a direct effect of anesthetics, possibly involv- 
ing both polar and hydrophobic interactions with channel pro- 
reins. Xanthines and 4-aminopyridine may participate by influ- 
encing polar interactions. The potentiating effect of xanthines on 
cell-to-cell uncoupling by anesthetics may provide some clues 
on the nature of cardiac arrhythmias in patients treated with 
theophylline during halotbane anesthesia. 
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Introduction 

Free exchange of ions and small metabolites among 
neighboring cells is mediated by gap junction chan- 
nels. Gap junction permeability can be reduced 
down to complete cell-to-cell uncoupling by a vari- 
ety of treatments including cell damage, inhibition 
of metabolism, acidification, hypoxia, exposure to 
anesthetics and halomethanes, etc. (reviewed in 

Loewenstein, 1981; Ramon & Rivera, 1987; Perac- 
chia, 1980, 1987; Spray & Burt, 1990). In most of 
these treatments, the change in gap junction perme- 
ability reportedly involves a Ca 2+ and/or H + effect 
on gap junction proteins or uncoupling intermedi- 
ates. In contrast, for neutral anesthetics (alkanols, 
halothane, etc.) the uncoupling mechanism is still 
poorly understood and a participation of Ca > and/ 
or H + has not yet been entirely ruled out. 

The uncoupling effects of alkanols, first de- 
scribed by Johnston, Simon and Ramon (1980) in 
crayfish septate axons, were soon confirmed in all 
vertebrate and invertebrate systems tested (Ddl6ze 
& Herv6, 1983; Bernardini, Peracchia & Peracchia, 
1984; Meda et al., 1986). Johnston and Ramon (1981) 
proposed an extracellular site of action for alkanols 
because uncoupling resulted only from their extra- 
cellular application to axons internally perfused with 
Ca a+- and H+-buffered solutions. This would seem 
to exclude entirely the involvement of Ca~ + and 
H 7 . However, Veenstra and DeHaan (1988) ob- 
served only a partial reduction of junctional conduc- 
tance with octanol in embryonal cardiac cells dia- 
lyzed by patch pipettes strongly buffered for Ca :+ , 
while complete uncoupling was seen only with weak 
Ca > buffers. Furthermore, Requena et al. (1985) 
and Vassort, Whittembury and Mullins (1986) moni- 
tored a small increase in [Ca2+]i with arsenazo II!in 
squid axons treated with octanol. 

In contrast, Meda et al. (I986) did not observe 
changes in [Ca:+]i with quin-2 in exocrine pancreatic 
cells uncoupled by heptanol, and alkanols displayed 
normal uncoupling efficiency in ventricular cell pairs 
dialyzed with pipette solutions strongly buffered for 
Ca ?+ (Niggli et ai., 1989; RiJdisfili & Weingart, 1989). 
Furthermore, alkanols cause modifications of elec- 
trical and mechanical parameters that would be hard 
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to reconcile with an increase in [Ca2+]i (Wojtczak, 
1985; Niggli et al., 1989). 

The uncoupling effects of halothane were first 
described by Hauswirth (1969) in cardiac cells and 
later confirmed in the same tissue by Wojtczak 
(1985), White et al. (1985), Butt and Spray (1988) 
and Niggli et al. (1989), Thus far, the effects of halo- 
thane on coupling have not been tested in any other 
system and possible uncoupling effects of isoflurane 
have never been tested. No measurement of [Ca2+] i 
and [H+]i, with ion-selective microelectrodes, in 
cells exposed to neutral anesthetics, has been per- 
formed as well. 

The present study reports data from simultane- 
ous monitoring of junctional resistance (R i) and ei- 
ther [Ca2+]i or [H +]i in crayfish septate axons uncou- 
pled with heptanol in the presence and absence of 
xanthines and provides the first evidence of halo- 
thane-induced uncoupling in noncardiac cells, of the 
ability of i soflurane to reduce coupling, of the capac- 
ity of xanthines to potentiate the uncoupling effi- 
ciency of heptanol, halothane and isoflurane, and of 
an inhibitory action of 4-aminopyridine on heptanol- 
induced uncoupling. The inclusion of xanthines in 
the protocols was suggested by recent findings of 
caffeine effects on low pHi-induced uncoupling (Per- 
acchia, 1990a), that confirmed previous evidence for 
the involvement ofCa~ + and Ca stores in the mecha- 
nism of channel regulation by acidification (Perac- 
chia, 1990b). 

Materials and Methods 

EXPERIMENTAL PREPARATION 

Crayfish (Procambarus ctarkii), purchased from Carolina Biologi- 
cal Supply (Burlington, NC) were kept in a well-oxygenated 
aquarium at 22-24~ The animals were anesthetized by cooling 
and sacrificed by decapitation. The ventral nerve cord was re- 
moved and the sheath covering the dorsal side of the cord was 
cut away. A segment of the nerve cord comprising three ganglia 
was cut off and pinned dorsal side up to a plexiglass chamber. 
Either the third or fourth abdominal ganglion was used. The 
chamber was continuously perfused at a flow of 1 ml/min with a 
standard saline solution for crayfish (SES) (Johnston & Ramon, 
1981) containing (in mM): NaCI, 205; KC1, 5.4; CaCl> 13.5 and 
HEPES, 5 (pH 7.5). The level of the solution in the chamber was 
maintained constant by continuous suction. 

For testing the effects of anesthetics, the axons were super- 
fused with SES containing either 2.8-5.6 mM I-heptanol (hepta- 
nol; Fisher Scientific, Fair Lawn, N J), 9.5-28.5 mM 2-bromo-2- 
chloro-l,l,l-trifluoroethane (halothane; Halocarbon Labs, Au- 
gusta, SC), or 23.6 mM I-chloro-2,2,2-trifluoroethyl diftuoro- 
methyl ether (isoflurane; Anaquest, Madison, Wl), in the pres- 
ence and absence of either 10-20 mM caffeine (Sigma Chemical, 
St. Louis, MO), or 10-20 mM theophylline (Sigma). For testing 
drugs active on Ca stores, 10 txM ryanodine (Calbiochem, La 

Jolla, CA) was added to either heptanol or heptanol-caffeine 
solutions. Possible effects of cyclic nucleotides were tested by 
adding either 500 /*M chlorophenyl-thio-cAMP (CPT-cAMP: 
Boehringer, Mannheim, FRG) or 5/,M forskolin (Sigma) or I mM 
3-isobutyl-l-methylxanlhine (IBMX; Sigma) or 100-200 /*M 8- 
bromo-cGMP (8Br-cGMP: Sigma) to SES or heptanol solutions. 

For testing the possible participation of Ca~* and Ca :+ chan- 
nels, either 1-10 //.M nisoldipine (Miles Pharmaceuticals, West 
Haven, CT) or 40(I-500/ZM Cd -'+ or solutions with high or low 
ICa 2+ ] were used in the presence of heptanol. The solutions with 
high [Ca -~+] contained (in raM): NaCI, 188; KCl, 5.4: CaCI-', 27; 
HEPES, 5 (pH 7.5). The solutions with low [Ca -'+ ] contained (in 
raM): NaCI, 216; KCI, 5.4:. CaCt:, 7: HEPES, 5 (pH 7.5). The 
possible participation of kinase C was tested by adding either an 
activator, 162 nM 4fl-phorbol-12,8-myristate-13ee-acetate (TPA, 
Sigma), or an inhibitor, 100 b~M I-(5-isoquinolinysulfonyl)-2- 
methylpiperazine (H7; Sigma), of this enzyme to SES or heptanol 
solutions. 

The possible participation of adenosine receptors was tested 
by adding 1.3-5 mm adenosine (Sigma) to either SES or heptanol 
solutions. Electrical uncoupling by acidification was obtained by 
superfusing the axons with a sodium acetate saline solution (Ac) 
containing (in raM): Na acetate, 205: KCI, 5.4 and CaCI_~, 13.5 
(pH 6.3). The effects of the K+-channel blocker 4-aminopyridine 
(4-AP) were tested by adding 4-AP (Aldrich Chemical, Milwau- 
kee, WI) to SES, heptanol and Ac, and adjusting the pH to either 
7.5 (SES and heptanol) or 6.3 (Ac). 

ELECTRICAL MEASUREMENTS 

Microelecirodes were pulled from borosilicate glass capillaries 
1.2 mm (o.d.), 0.68 mm {i.d.) (Kwik fill, WP Instruments, New 
Haven, CT) and filled with a 2.5 M KCI solution buffered to pH 
7 with 20 mM HEPES. The electrodes had an 8-10 Mfl resistance 
in SES. Four microelectrodes were inserted into a lateral giant 
axon, two on each side of the septum. The bath was grounded 
with a silver-silver chloride reference electrode connected to the 
chamber via an agar-SES bridge. 

Hyperpolarizing square current pulses (150 nA, 300 msec) 
were generated by a Dell System 200 computer coupled to a 
D/A converter (DT 2801, Data Translation, Marlborough, MA) 
and a voltage-to-current converter (701 M, WPI). The pulses were 
injected every 10 sec, alternatively into the posterior (Ct) and 
anterior (C2) axon segment. The resulting electrotonic potentials 
V~, V2 (from current injection in C~), Vr,, V,, (from injection in 
C2) and the membrane potentials (E~ and E-') were recorded with 
two voltage microelectrodes through a voltage follower (AM-4, 
Biodine Electronics, Santa Monica, CA). The voltage signals 
were displayed on a storage oscilloscope and on a chart recorder 
and were digitized and stored both on the hard disc of the com- 
puter and on VCR tape (Peracchia, 1990b). 

ION-SENSITIVE MICROELECTRODES 

[Ca2+]i and [H+]i were measured with ion-sensitive microelec- 
trodes based on neutral carrier sensors. The microelectrodes were 
prepared as previously described (Peracchia, 1990b). 

Ca 2+ microelectrodes used a recently developed calcium 
cocktail (ETH 129, Schefer et al., 1986) (Fluka Chemical, Ron- 
konkoma, NY), This cocktail contains the Ca -'+ ionophore 
N,N,N l ,N I-tetracyclohexyl-3-oxapentanediamide, which forms 
an ideal coordination sphere of nine oxygen atoms for Ca > -  
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uptake (Schefer el al., 1986). Ca microelectrodes prepared with 
this cocktail have a logarithmic response down to ICa -~- ] of 5 x 
[0 iii M and are virtually insensitive to other ions (Ammann et 
al., 1987), including H + and acetate (Peracchia, 1990b). The mi- 
croelectrodes were backfilled with filtered Ca 2+ solutions buf- 
fered with EGTA (pCa 7; Alvarez-Leefmans, Rink & Tsien. 1981 ) 
or citrate (pH 7) and containing 220 mM KC1 to match [K-~]i. The 
Ca 2+ sensitivity and response time of the microelectrodes were 
tested as previously described (Peracchia, 1990b). The electrode 
response ranged from 15 to 25 mV per pCa unit. Addition of 
heptanol to test solutions did not change the magnitude of the 
microelectrode response. Micoelectrodes typically had a 50% 
response time of 14 sec. 

A proton cocktail (Fluka) containing the neulral carrier tri- 
n-dodecylamine (Amman et a[., 1981 ) was used for pH microelec- 
trodes. The microelectrodes were backfilled with a filtered 2.5 M 
KCI solution buffered to pH 7 with 20 mM HEPES. The H + 
sensitivity and response time of the microelectrodes were tested 
as previously described (Peracchia, 1990b). The microelectrode 
response ranged from 50 to 55 mV per pH unit. Microelectrodes 
typically had a 50% response time of 7.5 sec. 

ANALYSIS OF DATA 

Both membrane (Rm~, Rm2) and junctional (Ril, Ri2 ) resistances 
were calculated and plotted on-line on the computer monitor 
by means of a program written in ASYST language (Adaptable 
Laboratory Software, Rochester, NY). The resistances were cal- 
culated from current (I t , 12) and voltage (V I , V_,, Vl,, V2,) records 
using the rr-t transform (Bennett, 1966). 

The voltage signal detected by the ion-sensitive microelec- 
trodes was passed through the high impedance amplifier, filtered 
(0.1 Hz) and displayed on the pen recorder after subtraction of 
membrane potential. At 10-sec intervals, the voltage of the Ca 2" 
microelectrode was also sampled by the computer 100 msec be- 
fore each current pulse. The voltage signal was digitized, stored 
unfiltered on the hard disc and plotted on-line after subtraction 
of the membrane potential (Peracchia, 1990b). 

Results 

EFFECTS OF HEPTANOL ON 

JUNCTIONAL RESISTANCE 

Lateral giant axons had a membrane potential (Ej, 
E 2) ranging from -80  to -95  mV and were well 
coupled at the septum. The junctional resistance 
(Ri), measured soon after impalement with four mi- 
croelectrodes, was 150 -+ 53,7 kf~ (mean + sD; 28 
measurements in 28 axons). Superfusing the axons 
with 2.8-5.6 mM heptanol caused a small membrane 
depolarization (Figs. 1A and B and 3A) and increased 
R~ to 191.3 + 83% (mean -+ SD; 87 measurements in 
28 axons) of basal Rj values, averaging 160 -+ 56.2 
kf~ (mean + SD; 87 measurements in 28 axons). In 
some experiments the Rj curve was fairly symmetri- 
cal (Fig. 1C), but in others the recovery phase was 
quicker (Fig. 3B); in these cases, also the membrane 

potentials, in addition to the electrotonic potentials, 
recovered more quickly (Fig. 3A). The effects of 
heptanol varied significantly from axon to axon. An 
8-min treatment with 5.6 mM heptanol increased R i 
to values ranging from 110 to 413% of basal values. 
Although in some axons a 6-min treatment with 2.8 
mM heptanol increased Ri as much as 629% (from 
140 to 880 kf~) of control values, in others a 46-rain 
treatment with 5.6 mM heptanol increased Ri as little 
as 383% (from 120 to 460 kD) of basal values (Fig. 
ID). Most often the R i sensitivity to heptanol was 
relatively constant within a preparation (Fig. I C), 
but occasionally Rj sensitivity changed with time 
(Fig. 2). Therefore, treatments found to change hep- 
tanol efficiency were always compared with hepta- 
nol controls immediately preceding or following 
them. 

EFFECTS OF CAFFEINE ON CHANGES IN 

JUNCTIONAL RESISTANCE WITH HEPTANOL 

Addition of 10-20 mM caffeine to heptanol solutions 
caused a greater increase in V r and V2,, a greater 
reduction of V 2 and V1,, (Figs. 1A and 3A), and 
consequently a significant increase in Rj maxima 
with respect to controls (Figs. 1C, 2 and 3B). The Rj 
maxima with heptanol-caffeine were 309.3 _+ 265% 
(mean _+ SD; 24 measurements in 13 axons) of those 
with heptanol alone. The magnitude of increase in 
R i maxima was not affected by caffeine pretreatment 
(Fig. I C, compare second and fourth uncoupling 
events). Similarly, caffeine pretreatments did not 
change the uncoupling efficiency of heptanol alone 
(Fig. 2, eighth heptanol treatment). Therefore, caf- 
feine appears to affect the heptanol-induced uncou- 
pling only when it is used in conjunction with hepta- 
nol. When caffeine was added to heptanoi several 
minutes after the beginning of heptanol treatment, 
the rate of increase in Rj rose significantly. Figure 1 
(B and D) shows that a 7-min treatment with heptan- 
ol-caffeine following 22 rain in heptanol alone virtu- 
ally doubled the magnitude of Rj increase caused 
by heptanol alone. In this experiment, addition of 
caffeine to heptanol enhanced the maximum rate of 
R i increase from 14 to 35 kf~/min (Fig. ID). 

Do CALCIUM AND HYDROGEN IONS PARTICIPATE 

IN THE UNCOUPLING MECHANISM OF HEPTANOL 

AND HEPTANOL-CAFFEINE? 

The possible participation of Ca 2+ and/or H + in the 
effects of heptanol and heptanoi-caffeine on Rj was 
tested by measuring [Ca2+] i and [H+]i, and by 
applying treatments that alter either Ca 2+ entry or 
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Fig .  1. Time course of changes in electrotronic potentials and Ri in crayfish septate axons uncoupled with heptanol in the presence and 
absence of 20 mM caffeine. (A and B) low speed chart recording of membrane and electrotonic potentials in the posterior (upper trace) 
and anterior (lower trace) axon segment. Hyperpolarizing square current pulses ( 150 hA, 300 msec) are injected every 10 sec alternatively 
into the posterior (C0 and anterior (C2) axon segment. The resulting electronic potentials V~ and V~_ (from current injection in C0, and 
Vl~ and V,, (from current injection in C 2) as well as the membrane potentials (E I and E 2) are displayed on the chart recording and stored 
on VCR tape and on the computer's hard disc for calculating Ri and R,,. With heptanol, V~ and V,  increase and VI:. and V2 decrease, 
due to an increase in Ri" With heptanol-caffeine a larger change in electrotonic potentials takes place, indicating a larger increase in 
Rj. Note that exposure to caffeine alone (A), as a pretreatment, causes mild depolarization but does not change the amplitude of the 
electrotonic potentials; in contrast, addition of caffeine to heptanol during heptanol superfusion (B) causes a rapid change in the 
amplitude of the electrotonic potentials indicative of rapid increase in Ri- (c) Computer calculated changes in R i from the experiment 
shown in part in A (third and fourth heptanol treatments). Note that R i increases with heptanol-caffeine 2-3 times as much as with 
heptanot alone. The Rj maxima with heptanol-caffeine are the same both in the presence and absence of caffeine pretreatment (compare 
second and fourth heptanol treatments). (D) Computer calculated changes in R i from the experiment shown in part in B (first heptanol 
treatment). During the first heptanol treatment Ri increases only to 190% of basal values with a 22-min heptanol superfusion; in contrast, 
upon addition of caffeine R/increases to 340% of control values in just 7 min. The second heptanol treatment shows that the maximal 
rate of Ri increase with heptanol is 14 M)/min; with heptanol-caffeine (first treatment) the rate more than doubles (35 kO./min) 

Ca > release from intracellular stores. With Ca 2+- 
sensitive microelectrodes, [Ca>]i was found to de- 
creased slightly with either heptanol or heptanol- 
caffeine (Fig. 3). In both cases R/and pCa maxima 
coincided (Fig. 3B), suggesting that both parameters 
may be influenced by similar factors. With pH-sensi- 
tive electrodes, [H+]i was also found to decrease 
with heptanol (Fig. 4), although only transiently. The 
absence of Ca > participation in heptanol-induced 
uncoupling was further supported by the observa- 

tion that neither different [Ca2+] o (ranging from 7 to 
27 mM) nor blockers of Ca 2+ entry, such as Cd 2+ (500 
#XM) and nisoldipine (10 #XM), significantly changed 
heptanol uncoupling efficiency (data not shown). 

To block Ca 2+ release from internal stores, rya- 
nodine (10 /XM) was added to both heptanol and 
heptanol-caffeine. The Rj maxima with either hep- 
tanol-ryanodine (data not shown) or heptanol- 
caffeine-ryanodine (Fig. 5) were not significantly 
different from R/ maxima with either heptanol or 
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Fig. 2. Time course of R i changes in 
crayfish axons uncoupled by heptanol in 
the presence or absence of caffeine. In this 
preparation the uncoupling efficiency of 
heptanol decreases significantly during the 
first two hours. Note the difference in R i 
maxima between first and third uncoupling 
events, in spite of the same duration of 
heptanol superfusion (8 min). Similarly, Ri 
maxima decrease in the presence of 
caffeine (compare second and fourth 
uncoupling events). After the first two 
hours an increase in superfusion duration 
to 15 rain is needed to obtain RJ maxima of 
similar magnitude (compare third and fifth 
uncoupling events). Note that caffeine 
pretreatment does not change the 
uncoupling efficiency of both heptanol- 
caffeine (sixth uncoupling event) and 
heptanol (eighth uncoupling event) 

heptanot-caffeine, respectively, indicating that nei- 
ther uncoupling treatment involves the participation 
of caffeine-ryanodine-sensitive Ca 2 + stores. 

ARE THE EFFECTS OF HEPTANOL AND 

HEPTANOL-CAFFEINE ON JUNCTIONAL 
RESISTANCE MEDIATED BY KINASES.  9 

The possibility that caffeine enhances the effects of 
heptanol on junctional resistance by increasing the 
concentration of cyclic nucleotides via inhibition of 
phosphodiesterases was tested by exposing the ax- 
ons to other xanthines (theophylline and IBMX), to 
an activator of adenylate cyclase (forskolin) and to 
diffusible cAMP and cGMP (CPT-cAMP and 8Br- 
cGMP). 

Addition of 10-20 mM theophylline to heptanol 
solutions dramatically enhanced the heptanol effects 
on Rj (Fig. 6A). The R/maxima with heptanol-the- 
ophylline were 676 _+ 386% (mean _+ SD; 4 measure- 
ments in 3 axons) of those with heptanol alone. Simi- 
larly to caffeine (Fig. 3), theophylline did not 
significantly modify the effects of heptanol on 
[Ca2+]i (Fig. 614). In contrast, additions to heptanol 
of 1 mM IBMX (Fig. 6B), a xanthine 200 times more 
potent than caffeine in inhibiting phosphodiesterases 
(Kramer & Wells, 1980), 5 /.tM forskolin (Fig. 6C), 
500 /a.M CPT-cAMP, or 200 /.IN 8Br-cGMP (data 
not shown) did not have any significant effect on R/ 
maxima. 

To test the possible involvement of kinase C 
the axons were superfused with heptanol solutions 

containing either I62 nM TPA or [00/ZM H7. Neither 
the activator (TPA) nor the inhibitor (H7) of kinase 
C had any appreciable effect on heptanol uncoupling 
efficiency (data not shown). No change in Ri was 
also observed with TPA alone. 

ARE THE HEPTANOL EFFECTS ON 

JUNCTIONAL RESISTANCE MEDIATED BY 

ADENOSINE RECEPTORS.'? 

Since caffeine is a powerful inhibitor of adenosine 
receptors, the effects of adenosine on both R/and Ri 
changes with heptanol were tested. Superfusion of 
1.3-5 mM adenosine, added to either SES or hepta- 
nol solutions, did not significantly change either the 
basal R i values or the Ri maxima with heptanol (data 
not shown), indicating that adenosine receptors are 
unlikely to participate in the effects of heptanol and 
caffeine on coupling. 

INHIBITORY EFFECTS OF 4-AMINOPYRIDINE ON 

HEPTANOL-INDUCED INCREASE IN 

JUNCTIONAL RESISTANCE 

The K +-channel blocker 4-AP, tested for unrelated 
reasons, was found to strongly inhibit the heptanol- 
induced uncoupling (Fig. 7A). With heptanol solu- 
tions containing 5 mM 4-AP the R i maxima were 26.2 
+ 20% (mean _+ SD; 12 measurements in 5 axons) of 
those with heptanol alone. In contrast, addition of 
4-AP (5 mm) to acetate solutions did not alter their 
uncoupling effects (Fig. 7B). 4-AP did not signifi- 
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cantly change the effects of heptanol on [Ca 2+ ]: (data 
not shown). No effect on Ri was seen with 4-AP 
alone, superfused in SES for periods as long as 3 
min, the only observable change being a 3-4 mV 
positive deflection in membrane potential, probably 
the result of K+-channel blockage. 

EFFECTS OF HALOTHANE AND ISOFLURANE ON 

JUNCTIONAL RESISTANCE AND THEIR 

POTENTIATION BY CAFFEINE 

Halothane (28.5 mM), superfused for 4-10 min, 
caused a small bimodat change in membrane poten- 

tial (Fig. 8A)and increased R~ to 155.6 _+ 56% (mean 
+- so; 9 measurements in 4 axons) of basal R i values 
averaging 226 -+ 73 kf~ (mean _+ sD; 9 measurements 
in 4 axons) (Fig. 8B and C). Addition of 20 mM 
caffeine to halothane solutions caused greater in- 
crease in Vj and V~., greater reduction of V 2 and 
V w, and more marked depolarization (Fig. 8A), re- 
flecting a greater increase in Rj maxima than with 
halothane alone (Fig. 8B and C).The R/maxima with 
halothane-caffeine were 329 -+ 147 (mean -+ SD; 8 
measurements in 4 axons) of those with halothane 
alone. As seen with heptanol, caffeine pretreatment 
did not change the Rj maxima obtained with halo- 
thane-caffeine (data not shown). 
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Similar results were obtained in preliminary ex- 
periments with isoflurane. A 10-min superfusion 
with SES containing 23.6 mM isoflurane caused a 
4-5 mV depolarization and increased R i to approxi- 
mately 125% of basal values (Fig. 8C). Addition of 
20 mM caffeine to isoflurane solutions increased the 
R i maxima to approximately 170% of Ri maxima with 
isoflurane alone (Fig. 8C). 

EFFECTS OF HALOTHANE ON [NTRACELLULAR 
CALCIUM CONCENTRATION 

In preliminary experiments with Ca2+-sensitive mi- 
croelectrodes halothane was found to decrease 
[Ca2+]g (Fig. 9). However, while with heptanol 
[Ca2+]/remained lower than normal throughout the 
entire treatment (Figs. 3 and 6A), with halothane the 
decrease in [Ca2+]i was transient. In Fig. 9, [Ca2+]~ 
decreased only within the first third of the 9 rain of 
halothane treatment. At the end of the treatment 
there was a small and transient increase in [Ca2+]i 
(Fig. 9). 

Discussion 

This study has probed the uncoupling mechanism 
of the neutral anesthetics heptanol, halothane and 
isoflurane by monitoring R/, [Ca2+]i, [H+]i and the 
effects of xanthines, different [Ca 2 + ],,, Ca 2 +-channel 
blockers, an inhibitor of Ca~ + release, diffusible cy- 
clic nucleotides, an activator of adenylate cyclase, 

both an inhibitor and an activator of kinase C, adeno- 
sine and a K+-channel blocker. The data support a 
Ca 2+- and H+-independent uncoupling mechanism 
potentiated by caffeine and theophylline and inhib- 
ited by 4-AP. The xanthine effects do not appear to 
be mediated by internal Ca 2+ release, phosphodies- 
terase activation and inhibition of adenosine re- 
ceptors. 

The effects of anesthetics on coupling differ in 
magnitude and time course from those of acidifica- 
tion. The slower rate o f R  i increase with anesthetics 
could result from slow diffusion into the hydropho- 
bic membrane compartment. The smaller Ri  maxima 
could indicate either that fewer channels are affected 
or that anesthetics affect open channel probability 
to a lesser extent than acidification. Indeed, anesthe- 
tics have been shown to change open channel proba- 
bility, but not single channel conductance (Butt & 
Spray, 1988; Veenstra & De Haan, 1988; R0disiili & 
Weingart, 1989). 

The observation that the R i recovery from hepta- 
nol is often faster than the onset could suggest that 
the cytosolic, more rapidly reversible, fraction of 
heptanol has a larger impact on Rj than the fraction 
incorporated into membranes. Alternatively, hepta- 
nol could be released by hydrophobic domains of 
channel proteins and/or boundary lipids faster than 
from other membrane regions. 

The effect of caffeine on uncoupling by anesthe- 
tics was believed at first to indicate a participation 
of Ca z+ release from stores, as previously shown 
with acidification (Pevacchia, 1990a,b). However, 
[Ca2+] i decreased both with heptanol and with halo- 
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thane, the former in the presence and absence of 
either caffeine or theophylline, and Ca 2+ release was 
excluded by the inability of  either caffeine pretreat- 
ment or ryanodine to reduce Rj maxima with hepta- 
nol or heptanol-caffeine; in contrast,  these treat- 
ments reduced the Ri maxima with acidification 
(Peracchia, 1990a). The negative results obtained 

with high and low Ca 2+ solutions and with addition 
of  Cd 2+ or nisoldipine to heptanol also exclude, at 
least in part, an increase in Ca 2+ influx. 

Earlier studies have produced conflicting results 
on the involvement of Ca 2+ in the action of anesthe- 
tics on gap junctions. Morphological studies de- 
scribed similar changes in gap junction particle size 
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and spacing with heptanol and other uncouplers 
known to increase [Ca2+]i, in heart (Ddl6ze & 
Herv6, 1983, 1986) and in pancreas (Bernardini et 
al., 1984). In a double whole-cell clamp study octa- 
nol decreased junctional conductance to 4% of con- 
trol values with patch-pipette solutions weakly buf- 
fered for Ca 2+ (0. I mM EGTA), and to 30% with 
strongly buffered solutions (5 mM EGTA) (Veenstra 
& De Haan, 1988), A moderate increase in [Ca2+] i 
was monitored with the Ca 2+ indicator arsenazo lIl 
in squid axons exposed to alkanols (Requena et al., 
1985; Vassort et al., 1986). 

In contrast, Meda et al. (1986) reported no sig- 
nificant changes in [Ca2+] i measured with quin-2, in 
exocrine pancreas treated with heptanol. Several 
double whole-cell clamp studies ( B u r t &  Spray, 
1988; Somogyi & Kolb, 1988; Niggli et al., 1989, ROd- 
is01i & Weingart, 1989) reported normal uncoupling 

efficiency of alkanols and halothane with patch-pi- 
pette solutions strongly buffered for Ca ,-+ . The nega- 
tive Jnotropic effect of  heptano] and halothane on 
the heart (Lynch et al., 1981; Wojtczak, 1985; Niggli 
et al., 1989) is also inconsistent with an increase in 
[Ca2+]i. 

Caffeine could potentiate the uncoupling effect 
of anesthetics by increasing the concentration of 
cyclic nucleotides, because, aside from affecting 
Ca 2+ stores, it inhibits phosphodiesterases (Butcher 
& Sutherland, 1962). The similar effect of  theophyl- 
line on heptanol-induced uncoupling could be con- 
sistent with this idea, because theophyltine is even 
a more powerful inhibitor of phosphodiesterases 
(Butcher & Sutherland, 1962). However,  IBMX, a 
xanthine 200 times more powerful than caffeine in 
inhibiting phosphodiesterases (Kramer & Wells, 
1980), forskolin, a stimulator of cAMP synthesis, 
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and high concentrations of diffusible cAMP (CPT- 
cAMP) or cGMP (8Br-cGMP) had no effect on hep- 
tanol uncoupling efficiency. 

Another effect of xanthines is adenosine recep- 
tor inhibition (Daly, Bruns & Snyder, 1981). How- 
ever, xanthines inhibit these receptors at concentra- 
tions 3 to 4 orders of magnitude lower than those 
that affect coupling, and adenosine, tested at con- 
centrations as high as 5 mM, affected neither basal 
Rj values nor R i maxima with heptanol. Other phar- 
macological effects of xanthines (reviewed in Dews, 
1984) seemed totally unrelated to the action of anes- 
thetics and to mechanisms of coupling regulation, 
and thus worth testing. Therefore, present evidence 
seems to suggest a novel, possibly direct, pharmaco- 
logical effect of xanthines on coupling regulation. 

The mechanism of 4-AP-induced inhibition of 
heptanol uncoupling is also unclear. Although its 
effect may be unrelated to K+-channel blockage, 
different K+-channel blockers and other molecules 
of the pyridine family will need to be tested. 

In view of the fact that Ca 2+ does not seem 
to be involved in uncoupling by anesthetics, that a 
participation of H + is excluded by evidence of an 
increase in phi,  in agreement with data on squid 
axons (Vassort et al., 1986), and that the participa- 
tion of kinase C, another uncoupler (Murray & Fitz- 
gerald, 1979; Yotti, Chang & Trosko, 1979; Gainer 
& Murray, 1985; Yada, Rose & Loewenstein, 1985), 
is excluded by negative results with TPA and H7, 
it seems likely that anesthetics affect gap junction 
channels directly, as originally proposed by John- 
ston et al. (1980). In addition to gap junction chan- 
nels, anesthetics are believed to directly block sev- 
eral other channels, including Na + channels (Oxford 

& Swenson, 1979; Bean, Shrager & Goldstein, 1981; 
Hirche, 1984; Rodriguez, Villegas & Requena, 
1988), K + channels (Bean et al., 1981), Ca -,+ chan- 
nels (Twombly & Narahashi, 1989) and the ryano- 
dine-sensitive Ca2+-release channel of SR (Fill & 
Coronado, 1988). 

The mechanism of anesthetic-induced channel 
blockage is still poorly understood. Probably, it in- 
volves both a disordering of lipids neighboring chan- 
nel proteins, resulting in lipid expansion (reviewed 
in Hydon, Elliot & Hendry, 1984), and a direct inter- 
action with channel proteins (Franks & Lieb, 1982). 
Since anesthetic potency correlates more with octa- 
nol than hydrocarbon partition coefficient, the bind- 
ing site is likely to be amphiphilic (Frank & Lieb, 
1982), possibly involving both hydrophobic interac- 
tions and hydrogen bond formation with channel 
proteins and/or accessory proteins. Xanthines may 
participate in this scheme by favoring the interaction 
between anesthetics and gap junction channel pro- 
teins. Interestingly, other amphiphilic molecules 
such as fatty acids are also believed to directly block 
gap junction channels (Burt, 1989; Giaume, Randria- 
mampita & Trautmann, 1989). Their action has been 
attributed to both a disordering effect on perichannel 
lipids and an ionic interaction between the nega- 
tively charged carboxyl group and positively 
charged residues at the cytoplasmic end of gap junc- 
tion proteins (Burt, 1989). Basic amphiphilic se- 
quences with structures similar to calmodulin-bind- 
ing sites, recently identified at the base of the 
carboxy-terminus of liver, heart, and Xenopus em- 
bryo gap junction proteins, as well as the lens chan- 
nel protein MIP26 (Peracchia, 1988; Peracchia & 
Girsch, 1989; C. Peracchia, unpublished observa- 
tion) are good candidates for the site of action of 
anesthetics and fatty acids. Indeed, there is evidence 
for both an involvement of calmodulin-like proteins 
in gap junction channel gating (Peracchia, 1988) and 
the ability of fatty acids to directly activate calmodu- 
lin-dependent enzymes in the absence of calmodulin 
(Tanaka & Hidaka, 1980; Niggli, Aduryach & Cara- 
foli, 1981). 

In conclusion, this study provides evidence for 
the capacity of heptanol, halothane and isoflurane 
to uncouple crayfish axons. Their effects on coupling 
are significantly enhanced by xanthines and do not 
appear to involve changes in calcium or hydrogen 
concentrations and activation of kinases. A direct 
interaction between anesthetics and amphiphilic 
chains of gap junction proteins seems likely. This 
mechanism could involve both hydrophobic and po- 
lar interactions. The latter could be favored by xan- 
thines and inhibited by 4-aminopyridine. 

In connection with evidence for a potentiating 
effect of caffeine and theophylline on anesthetic- 
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induced uncoupling, future studies should explore 
possible detrimental consequences of clinical proce- 
dures involving combined treatment with anesthe- 
tics and xanthines. In this respect, the known occur- 
rence of cardiac arrhythmias following injection of 
theophylline in patients subjected to halothane anes- 
thesia may not be coincidental. However, it should 
be kept in mind that the concentrations of anesthe- 
tics and xanthines tested in our study were signifi- 
cantly higher than those clinically used. 

The author wishes to thank Dr. Jacek A. Wojtczak for helpful 
criticism and Ms. Lillian M. Peracchia for excellent technical 
assistance. This study was supported by NIH grant GM20113. 
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